
Code Generation 
Statements and Expresssions 



I. Function calls 
 
Suppose a node in your tree says to call function f 
with a particular list of arguments.  Since any 
program you are generating code for has passed 
your type checker, you should have a declaration of 
function f, so there should be a section in your 
assembly code file with label f.   



Here are the pieces of code you need to generate for 
the call: 

a) Code to evaluate each argument (as always, leavings 
its value in the accumulator), then pushing the 
argument onto the stack. 

b) Code to push the frame pointer 
 push %rbx 

c) Code to call the function: 
 call f 

d) The next line of code will be executed when you 
return from the call: 
 pop %rbx        # restore the frame pointer 

e) Finally, add 8 times the number of arguments to %rsp 
to pop the args 

 



I always push the arguments to the call in reverse 
order, so the first argument is highest on the stack.  
I do this with a little recursive function 
pushArgs(argList). 
 
pushArgs(argList) recurses on the tail of the argList, 
then generates code for the current element in 
argList, leaving its value in the accumulator, and 
then push the accumulator onto the stack.   



II. Return statements 
 There are 2 types of return statements in BPL: 
  return 
 and 
  return <exp> 
 

If you are returning a value, generate code for 
computing that value, leaving it in the 
accumulator.   
Whether you are returning a value or not, you 
need to deallocate the function's local 
variables before you return. 



One way to do this is to just move the frame  
pointer into the stack pointer: 
 movq %rbx, %rsp 
 
I find that it helps me to be very finicky about stack 
discipline, so instead of moving sp into fp, I add 
enough to %rsp to pop off the local variables I 
pushed on when I entered the function.  This 
requires knowing what function the return 
statement is in, so in one of my passes through 
each function I make a link from each return 
statement back to the declaration node for the 
function that contains it 



After deallocating the temporary variables, the 
only thing left to do is to return: 

  ret 
 
 
III   While loops 

The tree node for a while loop has a condition 
child and a body child.  The code starts by 
generating two labels, which you need to save in 
variables of your code generator; I'll call these 
varibles Label1 and Label2.   



You emit Label1, then recursively emit code for the 
condition expression.  This  code results in the 
value of the condition being put into the 
accumulator.  BPL regards 0 as False and anything 
non-zero as True.  After generating code for the 
condition emit a comparison and a conditional 
branch: 
  cmpl $0, %eax 
  je <Label2> 
This is followed by the code for the body of the 
loop.  At the end there are two more instructions: 
  jmp <Label1> 
 <Label2>: 



IV Comparison Operators 
 

As we have said before, you generate code for 
binary operators with 
 code to evaluate the left operand, leaving it 
  in the accumulator 
 push the accumulator 
 code to evaluate the right operand, leaving  
  it in the accumulator 
 code to perform the operation, leaving the 
  value in the accumulator 
 pop the stack 



This is straightforward for arithmetic operations. 
Comparisons need a bit more work.  Consider the 
comparison x < 10; suppose we have already 
generated code to evaluate x and push its value onto 
the stack, and that we have moved 10 into the 
accumulator.  We need to put either 1 or 0 into the 
accumulator. The following code does this: 

 cmpl %eax, 0(%rsp) 

 jl Label1 
 movl $0, %eax 
 jmp Label2 
Label1: 
 movl $1, %eax 
Label2: 



V. Write Statements 
We are using the C printf function for output.  
The BPL write( exp ) statement is converted to  
 printf(  "%d ", <exp> ) or  printf( "%s ", <exp> ) 
and the writeln( ) stataement is converted to 
 printf( "\n" ) 
 
For these to work we need three strings defined 
in the .rodata section: 
 .WriteIntString: .string "%d " 
 .WriteStringString: .string "%s " 
 .WritelnString: .string "\n" 
 . 



Naturally, you can call those strings something else, but I'll 
refer to them with those names. 
 
The code for write( exp ) where exp is an integer 
expression, starts with generating code for exp, leaving its 
value in the accumulator %eax.  This is followed with  

• movl %eax,  %esi 
• movq $.WriteIntString, %rdi 
• movl $0, %eax  
• call printf 

 
If exp is a string the code changes only in that the value of 
the string would be an address, so it would go into %rax 
and then into %rsi using movq instead of movl. 



The writeln( ) statement is almost identical; we 
just omit the second argument: 

• movq $.WritelnString, %rdi 
• movl $0, %eax  
• call printf 

 



VI. read expressions 
The read( ) expression only reads an integer 
value and places it in %eax.  We do this  via 
scanf("%d", &x).  I define a string in the .rodata 
section 
 .ReadIntString: .string "%d" 

Here is the code you to generate for the read( ) 
expression: 

• Decrement the stack pointer by 40 bytes.  
• Put the address 24 bytes below the new stack pointer 

into %rsi.  
• Put $.ReadIntString into %rdi 
• Call scanf 
• Move 24(%rsp) into eax.  
• Increment the stack pointer by 40 bytes. 

  

 


